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ABSTRACT
Motivation: Recent research has shown that gene expression
profiles can potentially be used for predicting various clinical
phenotypes, such as tumor class, drug response and survival
time. While there has been extensive studies on tumor clas-
sification, there has been less emphasis on other phenotypic
features, in particular, patient survival time or time to cancer
recurrence, which are subject to right censoring. We consider
in this paper an analysis of censored survival time based on
microarray gene expression profiles.
Results: We propose a dimension reduction strategy, which
combines principal components analysis and sliced inverse
regression, to identify linear combinations of genes, that both
account for the variability in the gene expression levels and
preserve the phenotypic information. The extracted gene com-
binations are then employed as covariates in a predictive
survival model formulation. We apply the proposed method to
a large diffuse large-B-cell lymphoma dataset, which consists
of 240 patients and 7399 genes, and build a Cox proportional
hazards model based on the derived gene expression com-
ponents. The proposed method is shown to provide a good
predictive performance for patient survival, as demonstrated
by both the significant survival difference between the pre-
dicted risk groups and the receiver operator characteristics
analysis.
Availability: R programs are available upon request from the
authors.
Contact: lexli@ucdavis.edu
Supplementary information: http://dna.ucdavis.edu/∼hli/
bioinfo-surv-supp.pdf.

INTRODUCTION
DNA microarray technology, which simultaneously measures
the expression levels of thousands of genes, is a ground-
breaking advance in biomedical and genomic research. It has
been shown in various studies that the gene expression profiles
can be used successfully in molecular classification of tumor
types (Golub et al., 1999), in therapeutic prediction of drug
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response (Scherf et al., 2000) and in genomic prediction of
patients’ survival (Rosenwald et al., 2002).

In recent years, tumor class prediction using gene expres-
sion data has been studied extensively (for a review see
Dudoit et al., 2002). However, there has been less develop-
ment in relating gene expression profiles to other phenotypes,
e.g. survival time, due to a number of challenges. First,
the microarray-based high-throughput technology generates
a huge number of potential predictors, i.e. genes, and the
expression levels of many genes are often highly correlated.
On the other hand, the sample size of patients or cell lines is
usually very small compared to the number of genes in the
study. Modeling such high-dimensional data is complex. The
problem becomes more difficult when the phenotypes such
as time to death or time to cancer recurrence are subject to
right-censoring. In Addition, microarray data often possess a
great deal of noise.

Among a few recent microarray studies of censored sur-
vival time, Rosenwald et al. (2002) employed hierarchical
clustering to first identify a small number of ‘signature’ gene
clusters. Based on those gene clusters, they then built a Cox
proportional hazards model for predicting time to death in
patients with diffuse large-B-cell lymphoma (DLBCL). One
disadvantage of clustering genes is that the sample phenotypes
are not efficiently used. Nguyen and Rocke (2002) proposed
to use partial least squares for survival data by employing
residuals for the Cox model. However, the use of resid-
uals in the estimation of parameters in the Cox model is not
well-established in the survival analysis literature, since there
are many different ways of defining residuals (Barlow and
Prentice, 1988). In addition, smaller sum of squares of resid-
uals in the Cox regression model context does not always
imply a better fit of the model. Park et al. (2002) circum-
vented the problem of censoring by reformulating the problem
as a standard Poisson regression, and then employed par-
tial least squares. But their method is limited to the linear
Cox proportional hazards model, because the transforma-
tion is valid only for that particular model. More recently,
Li and Luan (2003) proposed a penalized Cox proportional
hazards model within the framework of kernel estimation,
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and they evaluated their method using a number of survival
microarray datasets. Bair and Tibshirani (2003) re-analyzed
the lymphoma dataset of Rosenwald et al. (2002) by apply-
ing the nearest shrunken centroid supervised clustering and
partial least squares techniques.

In this paper, we introduce a dimension reduction strategy to
transform the high-dimensional gene expression data to a low-
dimensional space. A predictive survival model is then built
upon the reduced dimensional space. The proposed dimen-
sion reduction strategy consists of two steps. We first employ
principal components (PC) analysis to identify a number of
linear combinations of genes that capture the underlying vari-
ation structures of gene expressions. We then apply sliced
inverse regression (SIR) (Li, 1991), a technique of sufficient
dimension reduction (SDR) (Cook, 1998), to produce linear
combinations of genes that preserve all the information of
phenotype given gene expression. The extracted linear com-
binations of genes are then employed as covariates in the
subsequent survival model formulation. Our method differs
from others in that it both accounts for the variability in
the predictor space, and it preserves all response informa-
tion through the extracted gene components, so as to assure
the predictive power. In addition, no probabilistic model is
imposed in the dimension reduction process, thus it allows
the investigators to fit any model in the subsequent model
building stage of the analysis. PC analysis has widely been
applied in microarray studies, see for instance, Alter et al.
(2000), Holter et al. (2000) and Chiaromonte and Martinelli
(2002). Similar SDR techniques have been studied in the
microarray context, for instance, Chiaromonte and Martinelli
(2002), Bura and Pfeiffer (2003), Antoniadis et al. (2003),
Pérez-Enciso and Tenenhaus (2003). However, all these stud-
ies focus on tumor classification, in which the phenotype is
binary or multi-class, rather than censored survival time.

The rest of the paper is organized as follows: we first
present SDR method for censored survival data, and propose a
strategy that combines PC and SIR. We then present the idea
of using the time-dependent receiver-operator curve (ROC)
and areas under the curves (AUCs) for evaluating the pre-
dictive performance of the proposed method (Heagerty et al.,
2002). Following the Methods section, we apply our method
to the DLBCL dataset of Rosenwald et al. (2002). Finally, we
conclude with a brief discussion.

METHODS
Method of SDR
The problem of classification, regression and survival time
prediction can all be formulated as predicting a response out-
come Y , which can be binary, multi-categorical, continuous
or censored, given a number of predictors X, with X ∈ IRp.
The goal of sufficient dimension reduction is to find a p × d

matrix η, with d ≤ p, such that

Y X | η T X, (1)

where stands for the statistical independence. The state-
ment (1) implies that the p-dimensional predictor vector X

can be replaced by d-dimensional η T X without loss of any
information on regression of Y given X, because given η T X,
X contains no further information about Y . In practice, such η

exists, and d is often far less than p, hence dimension reduc-
tion is achieved. In many applications, d is as small as 1, 2 or
3; therefore, a fully informative data visualization becomes
feasible.

It is easy to see that η in (1) is not unique, because we can
multiply η by any non-zero constant and (1) still holds. There-
fore, we seek the linear subspace Span(η) which is spanned by
the columns of η. Such a space is called a dimension reduction
subspace (Cook, 1998). The intersection of all the dimen-
sion reduction subspaces, which is also a dimension reduction
subspace itself under minor conditions (Cook, 1994, 1996),
provides the most parsimonious characterization of regression
of Y given X, and is a unique population parameter. It is called
the central subspace, denoted by Sy|X, and is the main object
of interest in our dimension reduction inquiry.

There are a number of model-free methods to estimate
Sy|X, for instance, SIR (Li, 1991) and sliced average variance
estimation (SAVE) (Cook and Weisberg, 1991). We consider
SIR in this paper. SIR first replaces Y by a discrete version Ỹ

constructed by partitioning its range onto h intervals within
which Ỹ is constant. h is a tuning parameter of SIR, but the
choice of h usually does not affect the SIR estimate as long
as h > d (Li, 1991). It is then shown that, under a linear-
ity condition which is to be discussed later, the inverse mean
E(X | Ỹ ) belongs to Sy|X, thus estimation of E(X | Ỹ ) provides
useful information about Sy|X. Operationally, SIR performs
eigen-decomposition of the matrix �x|y = Cov[E(X | Ỹ )],
with respect to �x = Cov(X), i.e.

�x|y vi = λi �x vi , with λ1 ≥ · · · ≥ λp,

and vi
T �x vi = 1. (2)

The first d eigenvectors {v1, . . . , vd} in (2) provide a consist-
ent estimate of a basis for the central subspace Sy|X. There
are asymptotic tests available for determining the dimension
d = dim(Sy|X) of the central subspace. It consists of a
sequence of tests of hypotheses d = m versus d > m for
m = 0, . . . , p − 1. Estimate of d is taken as the minimum m

that the null hypothesis d = m is not rejected. Note that SIR
does not impose any traditional assumption on the distribution
of Y | X, henceforth, it allows a full flexibility in the sub-
sequent model formulation. On the other hand, SIR requires
a condition on the marginal distribution of X, the linearity
condition, which assumes that E(X | η T X = u) = A0 +A1u,
where A0 ∈ IRp and A1 is a p × d matrix. The condition
is satisfied when X follows a normal distribution. It is not a
severe restriction, because most low-dimensional projections
of a high-dimensional data cloud are close to normal (Hall
and Li, 1993). SIR is available in both statistical software R
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(Ihaka and Gentleman, 1996) and Arc (Cook and Weisberg,
1999).

Modification of SIR to censored survival data
SIR cannot be applied directly to the survival data because of
censoring. We propose here a modification of SIR to accom-
modate censoring. Let X be the vector of gene expression
values of p genes. We first introduce the following notation
related to survival data:

Y 0 = the true unobservable survival time,
C = the censoring time,
δ = the censoring indicator; δ = 1 if Y 0 ≤ C,

and δ = 0 otherwise,
Y = the observed survival time; Y = Y 0 if Y 0 ≤ C,

and Y = C otherwise.

Letting Y0 = (Y 0, C) T and Y = (Y , δ)T , the goal of SDR
for survival data is to find η such that

Y0 X | ηT X.

Implementation of SIR in this context requires estimation
of E(X | Y0). However Y0 is not observable, instead, what
can be observed is Y . Using the conditional probability argu-
ments, we have the following relationship between E(X | Y)

and E(X | Y0),

E(X | Y) = E[E(X | Y , Y0) | Y] = E[E(X | Y0) | Y], (3)

where the second equality holds because Y is a function
of Y0, therefore X Y | Y0. With the linearity condi-
tion, E(X | Y0) ∈ SY0|X, then (3) implies that E(X | Y) also
belongs to the central subspace SY0|X. Operationally, we slice
Y = (Y , δ)T to obtain its discrete version Ỹ . That is, we first
partition Y to Y1 for δ = 1 and Y0 for δ = 0. We then parti-
tion Y1 and Y0 to h intervals, respectively. This procedure is
called double slicing by Li et al. (1999). Once Ỹ is obtained,
the same eigenvalue decomposition as in Equation (2) can be
performed. See also Setodji (2003) for a discussion on SIR
for survival data.

Combination of SIR and PC analysis
Implementation of SIR requires the covariance matrix �x of X

to be non-singular, a condition that is often satisfied. However,
for microarray data, the number of genes p is much larger
than the number of samples n, in which case �x is singular.
To address this problem, we adopt the idea of Chiaromonte
and Martinelli (2002) to combine SIR with PC analysis. That
is, we first obtain q PCs based on correlations among all genes
with q < n. We then apply SIR with principal components as
input. By doing so, the dimension reduction takes into account
both the predictor variability and correlates the extracted linear
combinations of genes with the response. Selection of the
number of PCs q will be discussed in the Results section.

Time-dependent ROCs and AUCs
To evaluate the predictive performance of the proposed
method, we employ the idea of time-dependent ROC for cen-
sored data and AUC as our criterion (Heagerty et al., 2002).
For a given score function f (x), we define time-dependent
sensitivity and specificity functions as

Sensitivity(c, t |f (x)) = Pr{f (x) > c|δ(t) = 1},
Specificity(c, t |f (x)) = Pr{f (x) ≤ c|δ(t) = 0},

and define the corresponding ROC[t |f (x)] curve for any
time t as the plot of {sensitivity(c, t |f (x))} versus {1 −
specificity(c, t |f (x))}, with cutoff point c varying. The AUC,
AUC(t |f (x)), is defined as the area under the ROC(t |f (x))
curve. Here δ(t) is the event indicator at time t . A nearest
neighbor estimator for the bivariate distribution function is
used for estimating these conditional probabilities accounting
for possible censoring (Akritas, 1994). Note that larger AUC
at time t indicates better predictability of time-to-event at time
t as measured by sensitivity and specificity evaluated at time t .

RESULTS
Data description and missing values
The DLBCL dataset of Rosenwald et al. (2002) consists of
measurements of 7399 genes from 240 patients. Of those 240
patients, 160 were used for training the model and 80 were
reserved for model validation in Rosenwald et al. (2002). To
facilitate comparisons with their results, as well as other ana-
lyses of the same data in the literature, we use the same training
and testing sets in our analysis. A survival time was recorded
for each patient, which ranges between 0 and 21.8 years.
Among them, 138 were dead (uncensored) during the study
and 102 were alive at the end of the study (censored). More
description of the data can be found in Rosenwald et al. (2002).

There are a large number of missing expression values in
the data. Among the 7399 genes, only 434 genes have no
missing values. We first apply a nearest neighbor technique
(Troyanskaya et al., 2001) to estimate those missing values.
Specifically, for each gene, we first identify eight genes which
are the nearest neighbors according to Euclidean distance. We
then fill the missing with the average of the nearest neighbors.
Our method is slightly different from that of Troyanskaya et al.
(2001) in that we do not restrict the nearest neighbors only to
those 434 genes with no missing. We have tried both methods
of filling missing values and the results on survival prediction
are very close.

Identification of predictive components
Principal components are first identified based on the training
samples. With the number of PCs q ranging between 10 and
120, the accounted percentage of variation ranges between 45
and 95%. We choose q = 40 PCs, which accounts for ∼70%
of total variation, for subsequent analysis. Choice of q will be
further discussed later.
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Fig. 1. Survival curves for patients in two groups of having positive and negative estimated scores using gene expression profiles. (a) A total
of 160 patients in the training set; P -value = 1.89e − 15; and (b) 80 patients in the testing set; P -value = 2.17e − 05.

Examining the marginal scatter plot of the 40 PCs reveals no
strong violation of the linearity condition. SIR is then applied
with those PCs as input. The P -values of the asymptotic tests
for d = 0, 1, 2 and 3 are 0.063, 0.372, 0.679 and 0.873,
respectively. It suggests that the first SIR linear combination
captures all response information. Let s denote this extracted
linear combination of gene expression levels. Figure S1 (see
web supplement) plots the patients survival time versus s with
the censored status marked (circle denotes censored and dot
denotes uncensored). It is clear that s is capable of differen-
tiating between the dead and surviving patients. We also note
that the difference of survival time of censored and uncensored
patients with respect to s consists of both a location difference
and a scale difference. Thus, we may consider both the linear
and quadratic terms of s in the subsequent modeling (Cook
and Weisberg, 1999).

Since SIR imposes no model assumption in the stage of
dimension reduction, we are free to fit any model based on
the identified SIR covariates. To compare our method with
others, we fit a Cox proportional hazards model. It turns out
that both the linear and quadratic terms of s are significant
(P -value = 4.3 × 10−11 and 0.087, respectively), while the
second SIR linear combination is insignificant (P -value =
0.2). This agrees with the results of asymptotic tests. The
final model is

λi(t | si) = λ0(t) exp(0.2418 si − 0.0046 s2
i ),

where λ0(t) is an unspecified baseline hazard function, and
λi(t | si) is the hazard function for the i-th patient. In this
model, the gene expression profile measured over p genes
is related to the risk of death through the score function
f (si) = 0.2418 si − 0.0046 s2

i .

Figure 1 shows the Kaplan–Meier estimate of survival
curves for two groups of patients, the high-risk patients
[f (s) > 0] and the low-risk patients [f (s) < 0]. The cutoff
value 0 is chosen for convenience. Figure 1a plots the sur-
vival curves for the 160 training patients. The log-rank test
of difference between two survival curves yields a P -value
of 1.89 × 10−15, indicating a significant difference in overall
survival between the two groups. Figure 1b shows the sur-
vival curves for the 80 testing patients, where the scores are
computed based on the model that is estimated from the train-
ing samples only. The difference between the two risk groups
is still significant, with P -value of the log-rank test equal to
2.17 × 10−5. Both the survival plots and the log-rank tests
show that our proposed method works very well in predicting
patients survival risks.

Number of PCs and cross-validation
We next examine the problem of choosing a proper number of
PCs q. For each q in a sequence of values ranging from 10 to
150, we perform SIR and fit a Cox model for the 160 training
patients. We then evaluate the model for both the training
and the testing patients using the area under ROC curves as
a comparison criterion. Figure S2 (web supplement) shows
the AUCs for each value of q with survival time ranging from
1 to 10 years. We observe that the AUCs are essentially the
same for q between 30 and 130. Besides, the plots confirm
possible under-fitting for a small value of q and over-fitting
for a large q. As an illustration, three q values, 10, 40 and
150 represented by annotations 1, 4 and f respectively, are
highlighted in the plot by thick lines. When q = 1, the area
under ROC in both the training and the testing data are low
due to the lack of fitting. When q = 150, the area under ROC
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Fig. 2. Area under ROC at time 1–10 years for 5-fold cross-validation: solid lines, the average of AUCs; and dotted lines, the plus and minus
of one standard error of AUCs. (a) Results evaluated on patients in the training set of cross-validation and (b) Results evaluated on patients
in the testing set of cross-validation.

is high in the training samples but low in the testing samples,
indicating over-fitting of the model. The number of PCs of
q = 40 seems to provide a nice balance.

We also verify the performance of our method using a 5-fold
cross-validation. AUCs are again employed as a comparison
criterion. Figure 2 shows the average AUCs plus and minus
one standard error for training and testing data. The relative
stable performance of the fitted models can be seen in the plot.

Comparisons with other analyses
While it is out of the scope of this paper to compare the pro-
posed method with all available methods for relating gene
expression profiles to censored outcomes, we compare our
results to a few other analyses of the DLBCL dataset. We
focus on the method’s performance in predicting the patients
survival time. It should be noted, however, that such a com-
parison cannot be comprehensive since methods proposed by
the other studies may have their own desirable properties other
than the survival prediction.

We first compare our model with the PC Cox regression
analysis, i.e. a Cox model based on PC alone. Although a
Cox proportional hazards model can be fitted with 40 PCs
as covariates, the model involving 40 predictors is difficult
to interpret. In addition, with 40 predictors, there is much
less freedom to choose the form of the fitted model such as
including higher-order terms. One possible solution is to use
cross-validation methods to identify significant PCs out of the
40 PCs and to build a model based on the selected PCs. We
apply the cross-validated partial likelihood (Verwij and Van
Houwelingen, 1993; Huang and Harrington, 2002) method on
the training data and identify that the model with the first three
PCs (accounting for ∼25% of total variation) gives the best

relative predictive performance. Figure S3 (web supplement)
compares the performance of the Cox proportional hazards
models using the combination of PC and SIR, using all 40
PCs, and using only the three PCs chosen by cross-validation.
It is shown that the model with combination of PC and SIR
outperforms the other two methods. The P -values of log-
rank test of difference between two risk groups in the testing
dataset are 2.17 × 10−5, 3.40 × 10−3 and 3.33 × 10−2 for the
three methods, respectively. For AUCs, SIR is the best for the
training samples, and SIR and PC with all 40 components are
the best for testing samples. PC with only three components
performs poorly. Overall, the Cox model built based upon the
combination of PC and SIR shows the best performance in
both prediction and interpretation aspects.

Bair and Tibshirani (2003) employed supervised clustering
and partial least squares to classify patients to low-risk and
high-risk groups. Comparing our Figure 1b to Figure 6 in
their paper, we observe that the two results are comparable,
while our method shows slightly higher significance in overall
survival between the two risk groups in the testing dataset.
The P -value of log-rank test for the difference of two survival
curves is 2.17×10−5 for our method and 8.27×10−4 for that
of Bair and Tibshirani (2003).

We also compare our results with those presented in
Rosenwald et al. (2002). Following Rosenwald et al. (2002),
patients are divided into four risk groups based on the quart-
iles of the estimated scores (see Figure 2 of Rosenwald et al.,
2002). Figure S4 (web supplement) shows the plots of the
Kaplan–Meier estimates of survival of the four groups. It is
noteworthy to point out that a fair performance measure of pre-
diction of a future patient survival should be based on scores
that are estimated using training samples only (Figure S4-d).
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The testing samples information should not be used in model
building. Again, both the survival plot and the test indicate a
good predictive performance of our proposed method.

DISCUSSION
In this paper, we propose the use of PC analysis and
SIR to reduce the high-dimensional microarray data to a
low-dimensional space while accommodating censored sur-
vival phenotypes. The proposed method is applied to the
DLBCL data of Rosenwald et al. (2002). In conjunction
with a Cox proportional hazards model, the method is
shown to provide a good predictive performance for patient
survival.

SDR in the context of censored data is addressed, where
the goal is to recover the most parsimonious space, the cent-
ral subspace, of the true survival time Y 0 and censoring time
C given dependent predictor variables. Since Y 0 and often
C are unobservable, reduction is achieved through observed
survival time Y and status δ. In some situations, only the
central subspace of Y 0 given predictors is of interest. In this
case, the proposed method works without modification if C

is a constant, or C is independent of the true survival time
as well as the dependent variables. Otherwise, slight modi-
fication is needed, as was discussed in Li et al. (1999). In
addition, SIR is employed in this paper as an illustration to
accommodate censoring. The same idea can be well applied
to many other SDR methods, because, with Y being a func-
tion of Y0, SY|X ⊆ SY0|X. For instance, SAVE (Cook and
Weisberg) is a more comprehensive method than SIR in estim-
ating the central subspace; MAVE (Xia et al., 2002) is a local
SDR method which relaxes the linearity condition of SIR; and
DAME (Gather et al., 2002) provides a robust version of SIR
that is less prone to the influence of outliers. A similar double
slicing procedure can be applied to all those methods for the
survival data.

Since not all genes will be relevant to predict censored
survival phenotypes, we would expect better prediction res-
ults using only genes that are related to the phenotypes. One
approach which is often employed in microarray analysis is to
first select a number of individual genes based on the univari-
ate analysis. In survival data, such selection is usually based on
the univariate Cox proportional hazards model. A disadvant-
age in this method is that the significance of genes is measured
individually without accounting for correlations among genes
and possible combinatorial effects of genes on the risk of
event. For example, for the DLBCL dataset, applying an uni-
variate Cox model to the 160 training patients identifies 473
genes which are significant at 0.01 level. For the 80 testing
patients, however, only 67 genes are significant, out of which
only 4 genes are identified significant in both groups. Apply-
ing the proposed methods on those 473 genes results in a poor
performance due to the possible combinatorial effects of the
gene expressions on the survival (results not shown here). An

alternative idea is to select genes based on the coefficients in
the final Cox regression models. For instance, in our analysis
of the DLBCL data, we trace back the coefficient of each gene
in the linear combination. The absolute magnitude of these
coefficients may provide a useful measure of individual gene
contribution. Such a gene selection may also be carried out in
an iterative fashion, i.e. iteratively removing those genes with
small coefficients and refitting the model until the resulting
model gives significantly worse performance in prediction.
We are currently investigating these ideas.
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